# 200Gb/s QSFP-DD ER4 40km Transceiver

### LA-OT-200G-ER4

#### Description

This product is a 200Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for optical communication applications. The module converts 8 channels of 25Gb/s (NRZ) electrical input data to 4 channels of LAN-WDM optical signals, and multiplexes them into a single channel for 200Gb/s(PMA4) optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 200Gb/s(PMA4) optical input into 4 channels of WDM optical signals, and converts them to 8 channels of 25Gb/s (NRZ) electrical output data. The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE802.3ba. It contains a duplex LC connector for the optical interface and a 76-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. It can support up to 30km with 200G FEC and 40km with built-in PFEC. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

#### **Features**

- QSFP-DD MSA compliant
- 4 LWDM lanes MUX/DEMUX design
- Up to 40km transmission on single mode fiber (SMF) with built-in PFEC
- Operating case temperature: 0 to 70oC
- Maximum power consumption 12W
- Duplex LC connector
- RoHS compliant

#### **Applications**

- 5G Network
- 200G Ethernet
- Enterprise networking

#### **Transceiver Block Diagram**

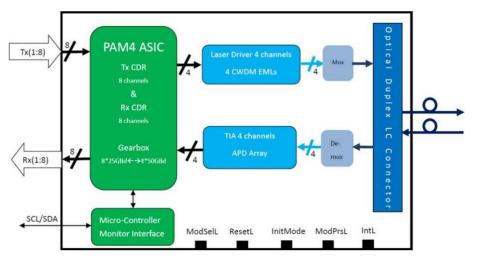



Figure 1. Transceiver Block Diagram

#### **Pin Assignment and Description**

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.

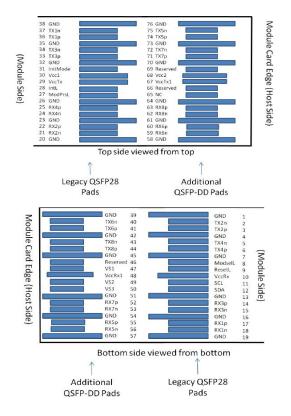



Figure 2. MSA Compliant Connector

#### **Pin Definition**

| Pin | Logic Symbol Description |          | Plug Sequence                                                                             | Notes |   |
|-----|--------------------------|----------|-------------------------------------------------------------------------------------------|-------|---|
| 1   |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 2   | CML-I                    | Tx2n     | Transmitter Inverted Data Input                                                           | 3B    |   |
| 3   | CML-I                    | Тх2р     | Transmitter Non-Inverted Data<br>Input                                                    | 3B    |   |
|     |                          | GND      | Ground                                                                                    | 18    | 1 |
| 4   |                          |          |                                                                                           |       | 1 |
| 5   | CML-I                    | Tx4n     | Transmitter Inverted Data Input<br>Transmitter Non-Inverted Data                          | 3B    |   |
| 6   | CML-I                    | Tx4p     | Input                                                                                     | 3B    |   |
| 7   |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 8   | LVTTL-I                  | ModSelL  | Module Select                                                                             | 3B    |   |
| 9   | LVTTL-I                  | ResetL   | Module Reset                                                                              | 3B    |   |
| 10  |                          | VccRx    | +3.3V Power Supply Receiver                                                               | 2B    | 2 |
| 11  | LVCMOS-<br>I/O           | SCL      | 2-wire serial interface clock                                                             | 3B    |   |
| 12  | LVCMOS-<br>I/O           | SDA      | 2-wire serial interface data                                                              | 3B    |   |
| 13  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 14  | CML-O                    | Rx3p     | Receiver Non-Inverted Data Output                                                         | 3B    |   |
| 15  | CML-O                    | Rx3n     | Receiver Inverted Data Output                                                             | 3B    |   |
| 16  | GND                      | Ground   | 1B                                                                                        |       | 1 |
| 17  | CML-O                    | Rx1p     | Receiver Non-Inverted Data Output                                                         | 3B    |   |
| 18  | CML-O                    | Rx1n     | Receiver Inverted Data Output                                                             | 3B    |   |
| 19  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 20  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 21  | CML-O                    | Rx2n     | Receiver Inverted Data Output                                                             | 3B    |   |
| 22  | CML-O                    | Rx2p     | Receiver Non-Inverted Data Output                                                         | 3B    |   |
| 23  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 24  | CML-O                    | Rx4n     | Receiver Inverted Data Output                                                             | 3B    |   |
| 25  | CML-O                    | Rx4p     | Receiver Non-Inverted Data Output                                                         | 3B    |   |
| 26  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 27  | LVTTL-O                  | ModPrsL  | Module Present                                                                            | 3B    |   |
| 28  | LVTTL-O                  | IntL     | Interrupt                                                                                 | 3B    |   |
| 29  |                          | VccTx    | +3.3V Power supply transmitter                                                            | 2B    | 2 |
| 30  |                          | Vcc1     | +3.3V Power supply                                                                        | 2B    | 2 |
| 31  | LVTTL-I                  | InitMode | Initialization mode; In legacy QSFP applications,<br>the InitMode pad is<br>called LPMODE | 3B    |   |
| 32  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 33  | CML-I                    | Тх3р     | Transmitter Non-Inverted DataInput                                                        | 3B    |   |
| 34  | CML-I                    | Tx3n     | Transmitter Inverted Data Input                                                           | 3B    |   |
| 35  |                          | GND      | Ground                                                                                    | 1B    | 1 |
| 36  | CML-I                    | Tx1p     | Transmitter Non-Inverted Data<br>Input                                                    | 3B    |   |

| 37 | CML-I | Tx1n     | Transmitter Inverted Data Input | 3B |   |
|----|-------|----------|---------------------------------|----|---|
| 38 |       | GND      | Ground                          | 1B | 1 |
| 39 |       | GND      | Ground                          | 1A | 1 |
| 40 | CML-I | Tx6n     | Transmitter Inverted Data Input | 3A |   |
| 41 | CML-I | Тх6р     | Transmitter Non-Inverted Data   | 3A |   |
|    |       |          | Input                           |    |   |
| 42 |       | GND      | Ground                          | 1A | 1 |
| 43 | CML-I | Tx8n     | Transmitter Inverted Data Input | 3A |   |
| 44 | CML-I | Тх8р     | Transmitter Non-Inverted Data   | 3A |   |
|    |       |          | Input                           |    |   |
| 45 |       | GND      | Ground                          | 1A | 1 |
| 46 |       | Reserved | For future use                  | 3A | 3 |
| 47 |       | VS1      | Module Vendor Specific 1        | 3A | 3 |
| 48 |       | VccRx1   | 3.3V Power Supply               | 2A | 2 |
| 49 |       | VS2      | Module Vendor Specific 2        | 3A | 3 |
| 50 |       | VS3      | Module Vendor Specific 3        | 3A | 3 |
| 51 |       | GND      | Ground                          | 1A | 1 |
| 52 | CML-O | Rx7p     | Receiver Non-Inverted Data      | 3A |   |
|    |       |          | Output                          |    |   |
| 53 | CML-O | Rx7n     | Receiver Inverted Data Output   | 3A |   |
| 54 |       | GND      | Ground                          | 1A | 1 |
| 55 | CML-O | Rx5p     | Receiver Non-Inverted Data      | 3A |   |
|    |       |          | Output                          |    |   |
| 56 | CML-O | Rx5n     | Receiver Inverted Data Output   | 3A |   |
| 57 | _     | GND      | Ground                          | 1A | 1 |
| 58 |       | GND      | Ground                          | 1A | 1 |
| 59 | CML-O | Rx6n     | Receiver Inverted Data Output   | 3A |   |
| 60 | CML-O | Rx6p     | Receiver Non-Inverted Data      | 3A |   |
|    |       |          | Output                          |    |   |
| 61 |       | GND      | Ground                          | 1A | 1 |
| 62 | CML-O | Rx8n     | Receiver Inverted Data Output   | 3A |   |

| 63 | CML-O | Rx8p     | Receiver Non-Inverted Dat<br>Output   | a 3A |   |
|----|-------|----------|---------------------------------------|------|---|
| 64 |       | GND      | Ground                                | 1A   | 1 |
| 65 |       | NC       | No Connect                            | 3A   | 3 |
| 66 |       | Reserved | For future use                        | 3A   | 3 |
| 67 |       | VccTx1   | 3.3V Power Supply                     | 2A   | 2 |
| 68 |       | Vcc2     | 3.3V Power Supply                     | 2A   | 2 |
| 69 |       | Reserved | For Future Use                        | 3A   | 3 |
| 70 |       | GND      | Ground                                | 1A   | 1 |
| 71 | CML-I | Тх7р     | Transmitter Non-Inverted<br>DataInput | ЗА   |   |
| 72 | CML-I | Tx7n     | Transmitter Inverted Data Input       | 3A   |   |
| 73 |       | GND      | Ground                                | 1A   | 1 |
| 74 | CML-I | Тх5р     | Transmitter Non-Inverted<br>DataInput | ЗА   |   |
| 75 | CML-I | Tx5n     | Transmitter Inverted Data Input       | 3A   |   |
| 76 |       | GND      | Ground                                | 1A   | 1 |

### **Recommended Power Supply Filter**

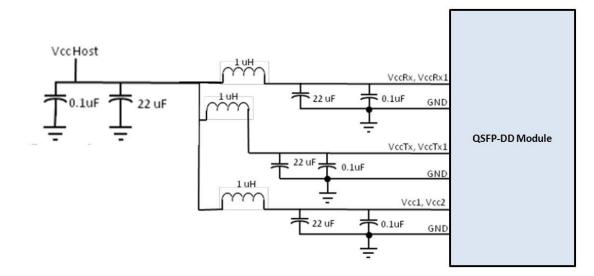



Figure 3. Recommended Power Supply Filter

#### **Absolute Maximum Ratings**

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

| Parameter                            | Symbol | Min  | Max | Units | Notes |
|--------------------------------------|--------|------|-----|-------|-------|
| Storage Temperature                  | TS     | -40  | 85  | degC  |       |
| Operating Case Temperature           | ТОР    | 0    | 70  | degC  |       |
| Power Supply Voltage                 | Vcc    | -0.5 | 3.6 | V     |       |
| Relative Humidity (non-condensation) | RH     | 0    | 85  | %     |       |
| Damage Threshold, each Lane          | THd    | -5.0 |     | dBm   |       |

#### **Recommended Operating Conditions and Power Supply Requirements**

| Parameter                  | Symbol | Min   | Typical | Max                  | Units | Notes |
|----------------------------|--------|-------|---------|----------------------|-------|-------|
| Operating Case Temperature | ТОР    | 0     |         | 70                   | degC  |       |
| Power Supply Voltage       | VCC    | 3.135 | 3.3     | 3.465                | V     |       |
| Data Rate, each Lane       |        |       | 26.5625 |                      | GBd   | PAM4  |
| Data Rate Accuracy         |        | -100  |         | 100                  | ppm   |       |
| Pre-FEC Bit Error Ratio    |        |       |         | 2.4x10 <sup>-4</sup> |       |       |
| Post-FEC Bit Error Ratio   |        |       |         | 1x10 <sup>-12</sup>  |       | 1     |
| Link Distance              | D      | 0.002 |         | 30                   | km    | 2     |
| Link Distance              | D      | 0.002 |         | 40                   | Km    | 3     |

Notes:

1. FEC provided by host system.

2. FEC required on host system to support maximum distance.

3. Built-in PFEC is required to support up to 40km

#### **Electrical Characteristics**

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

| Parameter                                        | Test<br>Point | Min                                        | Typical      | Мах  | Units | Notes |
|--------------------------------------------------|---------------|--------------------------------------------|--------------|------|-------|-------|
| Power Consumption                                |               |                                            |              | 12   | w     |       |
| Supply Current                                   | lcc           |                                            |              | 3.64 | A     |       |
|                                                  | Transı        | mitter (each Lan                           | e)           |      |       |       |
| Signaling Rate, each Lane                        | TP1           | 26.562                                     | 25 ± 100 ppm | l    | GBd   |       |
| Differential pk-pk Input<br>Voltage Tolerance    | TP1a          | 900                                        |              |      | mVpp  | 1     |
| Differential Termination<br>Mismatch             | TP1           |                                            |              | 10   | %     |       |
| Differential Input Return Loss                   | TP1           | IEEE 802.3-<br>2015<br>Equation<br>(83E-5) |              |      | dB    |       |
| Differential to Common<br>Mode Input Return Loss | TP1           | IEEE 802.3-<br>2015<br>Equation<br>(83E-6) |              |      | dB    |       |
| Module Stressed Input Test                       | TP1a          | See IEEE 80                                |              | 2    |       |       |
| Single-ended Voltage<br>Tolerance Range (Min)    | TP1a          |                                            | -0.4 to 3.3  |      | v     |       |
| DC Common Mode Input<br>Voltage                  | TP1           |                                            |              | -350 |       | 2850  |
|                                                  | Rece          | eiver (each Lane)                          |              |      |       |       |
| Signaling Rate, each lane                        | TP4           | 26.562                                     | 25 ± 100 ppm | 1    | GBd   |       |
| Differential Peak-to-Peak<br>Output Voltage      | TP4           |                                            |              |      |       | 900   |
| AC Common Mode Output<br>Voltage, RMS            | TP4           |                                            |              |      |       | 17.5  |
| Differential Termination<br>Mismatch             | TP4           |                                            |              |      |       | 10    |

|                                            |     |             | 1     |      |
|--------------------------------------------|-----|-------------|-------|------|
|                                            |     | IEEE 802.3- |       |      |
| Differential Output ReturnLoss             | TP4 | 2015        |       |      |
|                                            |     | Equation    |       |      |
|                                            |     | (83E-2)     |       |      |
| Common to Differential                     |     | IEEE 802.3- |       |      |
| Mode Conversion ReturnLoss                 | TP4 | 2015        |       |      |
| Mode conversion Returneoss                 |     | Equation    |       |      |
|                                            |     | (83E-3)     |       |      |
| Transition Time, 20% to 80%                | TP4 | 9.5         |       |      |
| Near-end Eye Symmetry<br>Mask Width (ESMW) | TP4 |             | 0.265 |      |
| Near-end Eye Height,<br>Differential       | TP4 | 70          |       |      |
| Far-end Eye Symmetry Mask<br>Width (ESMW)  | TP4 |             | 0.2   |      |
| Far-end Eye Height,<br>Differential        | TP4 | 30          |       |      |
| Far-end Pre-cursor ISI Ratio               | TP4 | -4.5        |       | 2.5  |
| Common Mode Output<br>Voltage (Vcm)        | TP4 | -350        |       | 2850 |

#### Notes:

1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.

2. Meets BER specified in IEEE 802.3bs 120E.1.1.

3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

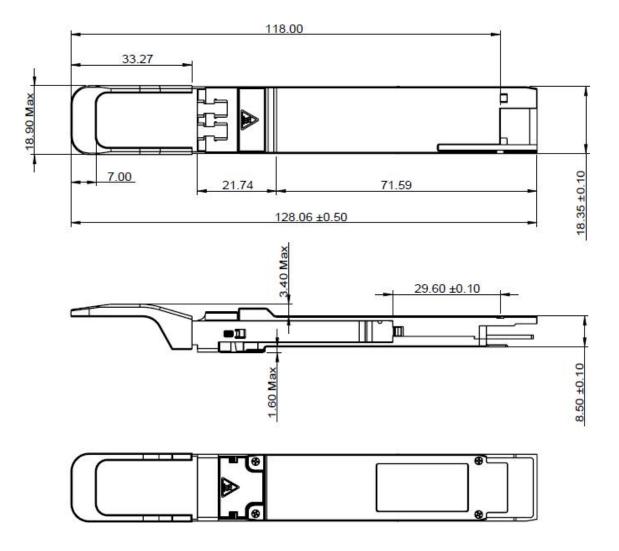
# **Optical Characteristics**

| Parameter                       | Symbol | Min      | Typical          | Max     | Units | Notes |  |  |
|---------------------------------|--------|----------|------------------|---------|-------|-------|--|--|
|                                 | LO     | 1294.53  | 1295.56          | 1296.59 | nm    |       |  |  |
| Wavelength Assignment           | L1     | 1299.02  | 1300.05          | 1301.09 | nm    |       |  |  |
|                                 | L2     | 1303.54  | 1304.58          | 1305.63 | nm    |       |  |  |
|                                 | L3     | 1308.09  | 1309.14          | 1310.19 | nm    |       |  |  |
|                                 | Tra    | nsmitter |                  | 1       | I     |       |  |  |
| Data Rate, each Lane            |        | 53       | .125 ± 100 pj    | pm      | GBd   |       |  |  |
| Modulation Format               |        |          | PAM4             |         |       |       |  |  |
| Side-mode Suppression Ratio     | SMSR   | 30       |                  |         | dB    |       |  |  |
| Total Average Launch Power      | РТ     |          |                  | 14.7    | dBm   |       |  |  |
| Average Launch Power, each Lane | PAVG   | -0.1     |                  | 5.6     | dBm   |       |  |  |
| Outer Optical Modulation        | Рома   | 3.4      |                  | 6.4     | dBm   |       |  |  |
| Amplitude (OMAouter), each Lane |        |          |                  |         |       |       |  |  |
| Launch Power in OMAouter minus  |        | 3        |                  |         | dB    |       |  |  |
| TDECQ, each Lane                |        |          |                  |         |       |       |  |  |
| Transmitter and Dispersion Eye  | TDECQ  |          |                  | 3.2     | dB    |       |  |  |
| Closure for PAM4, each Lane     |        |          |                  |         |       |       |  |  |
| Extinction Ratio                | ER     | 6        |                  |         | dB    |       |  |  |
| Difference in Launch Power      |        |          |                  |         |       |       |  |  |
| between any Two Lanes           |        |          |                  | 4       | dB    |       |  |  |
| (OMA <sub>outer</sub> )         |        |          |                  |         |       |       |  |  |
| RIN15.10MA                      | RIN    | -132     |                  |         | dB/Hz |       |  |  |
| Optical Return Loss Tolerance   | TOL    |          |                  | 15.1    | dB    |       |  |  |
| Transmitter Reflectance         | RŢ     |          |                  | -26     | dB    |       |  |  |
| Average Launch Power of OFF     | Poff   |          |                  | -30     | dBm   |       |  |  |
| Transmitter, each Lane          |        |          |                  |         |       |       |  |  |
| Receiver                        |        |          |                  |         |       |       |  |  |
| Data Rate, each Lane            |        |          | 53.125 ± 100 ppm |         |       |       |  |  |
| Modulation Format               |        |          | PAM4             |         |       |       |  |  |

# Lanbras

| Sensitivity, each lane                                       | Sen1 | MAX (-11.1, SECQ-12.5) |     | dBm | For<br>30km |  |  |  |
|--------------------------------------------------------------|------|------------------------|-----|-----|-------------|--|--|--|
| Sensitivity, each lane                                       | Sen2 | MAX (-14.1, SECQ-15.5) |     | dBm | For 40km    |  |  |  |
| Stressed Conditions for Stress Receiver Sensitivity (Note 8) |      |                        |     |     |             |  |  |  |
| Stressed Eye Closure for PAM4<br>(SECQ), Lane under Test     |      |                        | 3.4 |     | dB          |  |  |  |
| SECQ – 10*log10(Ceq), Lane underTest                         |      |                        |     |     | dB          |  |  |  |
| OMAouter of each Aggressor Lane                              |      |                        | -8  |     | dBm         |  |  |  |

#### **Digital Diagnostic Functions**


| Parameter                | Symbol       | Min  | Max | Units | Notes               |
|--------------------------|--------------|------|-----|-------|---------------------|
| Temperature Monitor      |              |      |     |       | Over operating      |
| Absolute Error           | DMI_Temp     | -3   | 3   | degC  | temperature range   |
| Supply Voltage Monitor   | DMI_VCC      | -0.1 | 0.1 | V     | Over full operating |
| Absolute Error           |              |      |     |       | range               |
| Channel RX Power Monitor |              |      |     |       |                     |
| Absolute Error           | DMI_RX_Ch    | -2   | 2   | dB    | 1                   |
| Channel Bias Current     | DMI_Ibias_Ch | -10% | 10% | mA    |                     |
| Monitor                  |              |      |     |       |                     |
| Channel TX Power Monitor | DMI_TX_Ch    | -2   | 2   | dB    | 1                   |
| Absolute Error           |              |      |     |       |                     |

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Notes:

4. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

# **Outline Drawing (mm)**





### https://www.lanaotek.com

☆

Specifications & design are subject to change without prior notice. For more details, please email to info@lanaotek.com. Copyright©2024 lanaotek.com All Rights Reserved